If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3w^2+5w=232
We move all terms to the left:
3w^2+5w-(232)=0
a = 3; b = 5; c = -232;
Δ = b2-4ac
Δ = 52-4·3·(-232)
Δ = 2809
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2809}=53$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-53}{2*3}=\frac{-58}{6} =-9+2/3 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+53}{2*3}=\frac{48}{6} =8 $
| -2x-14=5x+14 | | 45x-15+x-6x=-25+x-120 | | -2x-4(2-3x)=4(x-4)-16 | | 4x-11=7x-13 | | 5(x-3)=-2(3x-4) | | 6(x−5)+8=5(x−8) | | 7x-3x=-6+10+5(-3-3x) | | 89.99-15/15=p/100 | | -5-6r=-9r-20 | | 255u,u=5 | | 3(x-8)-2=6(x-1) | | 3(x−8)−2=6(x−1)3(x-8)-2=6(x-1) | | 28x-32=28x-32 | | 14=5+60x | | −5p+50=15 | | 5(a-3)=70 | | 40=12-5(5-4w) | | 6.75-9.99/9.99=p/100 | | 40=12−5(5−4w)40=12-5(5-4w) | | 2m+7/6=5m–2/5 | | 12x+15x-9+1=-7x+1-9 | | 4x-2(2-3x)=3(x-4)-6 | | 6z+5/6=7z+7/6 | | 15(x-3)=-2(3x-4) | | 2+(v+4)=-1 | | (-2u)+8u=-15 | | -1/3x+3/4=7/12 | | 175=25x+20 | | 7w=$7.637w | | 4/5y-1/3=2/5 | | 15+a/6=16 | | 2+(v+4)=-2 |